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T H E  CRYSTAL AND M O L E C U L A R  S T R U C T U R E  OF D I K E T E N E  

hk~ F~ Fo 
202 - -19  22 
21~ - -12  12 
222 --  3 < 6 
23~ 25 25 
24~ 13, 15 
252 16 20 
262 6 < 8 
272 - -27  27 
28~ - -  3 < 6  

Table 1 (cont.) 

hkZ ~'c /~o 
292 5 6 

2,10,2 --  6 6 
2,11,2 --  3 6 
2 ,12,~  --  1 < 6 
2,13,2 --  6 6 
2,14,2 7 6 
2,15,~ 2 < 6 
2,16,2 2 < 5 

hkl .Fc .Fo 
313 --  6 6 
323 2 < 7 
333 --  8 9 
343 --  6 < 7 
353 16 15 
363 --  8 6 
373 4 6 
38~ 3 6 
393 8 10 

3,10,3 --  6 6 
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The Diffraction of X-rays by Distorted-Crystal  Aggregates.  IV. 
Diffraction by a Crystal with an Axial  Screw Dislocation 
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In the reciprocal-lattice representation, the regions of high intensity become discs perpendicular 
to the dislocation axis. The variation of amplitude of reflexion across a disc can be represented 
either as an integral or as a finite series involving Bessel functions. Expressions for the integral 
breadths of lines on powder photographs are obtained in closed form. 

1. I n t r o d u c t i o n  

The hypothesis of dislocations explains many of the 
properties of cold-worked metals and the ease of 
crystal growth from vapour or solution. At the time 
when the work described below was begun (Wilson 
1949 a) there was no direct evidence of their existence, 
and it was hoped that  some might be found through 
study of the details of diffraction by cold-worked 

metals, preferably of single crystals deformed in a way 
that  would make it reasonable to suppose that  most of 
the dislocation axes were parallel. This interest in the 
effect of a dislocation on the X-ray diffraction patterns 
of a crystal has now largely disappeared, as growth 
spirals give an ample direct indication of the existence 
of dislocations, but it is perhaps worth while to place 
the results on. record, as the dislocated crystal and the  
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bent lamella (Wilson, 1949b; Blackman, 1951) appear 
to be the only models of distorted crystals for which 
detailed calculations exist. 

The theory of diffraction by an elastically distorted 
crystal is not easy, and the elastic field of a Taylor- 
Burgers dislocation (Koehler, 1941; Eshelby, 1949) is 
particularly complex. For the 'screw' dislocations 
more recently postulated (Burgers, 1939; Burton, 
Cabrera & Frank, 1949), however, the displacement 
of the atoms is simpler, and some results on diffraction 
by a cylindrical crystal containing an axial screw 
dislocation can be obtained. Hall (1950) has pointed 
out that  the leading term in the expressions for the 
displacements caused by 'edge' dislocations and inter- 
mediate types has the same form as that  for a screw 
dislocation, and that  the diffraction effects would be 
expected to be of the same general type. The 
modifications required when the displacement is not 
parallel to the dislocation axis, but is otherwise similar 
to that  of a screw dislocation, have already been out- 
lined (Wilson, 1950) and are not discussed further here. 

2. Ampl i tude  of reflexion 

Consider a cylindrical crystal of radius A, with a screw 
dislocation axis along its centre. (In the application 
to cold-worked metals the radius A is to be identified 
with some sort of an average distance between 
dislocations.) In the undislocated crystal the j th  cell 
is at 

rj = j l a  +j~b +j~c ,  (1) 

where the axes are chosen so that  e is parallel to the 
dislocation axis, which will normally have some 
important crystallographic direction. With the screw 
dislocation present the j th  cell will be shifted to 

, nv2 
rj = r j +  ~ c , (2) 

where y is an angle measured from some fixed direction 
perpendicular to c, and n is an integer determining the 
'pitch' of the screw. (the displacement experienced in 
moving once round the dislocation axis on what 
appears to be a lattice plane). The amplitude of X-ray 
diffraction from the dislocated crystal is 

G---- FZj  exp (2~riS.r~}, (3) 

where S is the position vector in reciprocal space and 
F the corresponding structure factor. With 

S = H a * + K b * + L c * ,  (4) 

where H, K, L are not necessarily integral, the 
amplitude may be written 

G=FZ' j  exp ( 2 e r i ( j ~ H + j ~ g + j . ~ L ) + n L i v / } .  (5) 

The angle ~ depends on Jt and J2, but not on J3, so 
that  the sum over J3 may be performed immediately, 
giving 

(7 = F . s i n  ( ~ N 3 L )  
sin zlL X i exp  { 2 z d ( j l H + j z K ) + n L i v 2 }  , 

(6) 

where N 8 is the number of unit cells in the c direction. 
Since N 3 is large, the factor containing L is appreciable 
only in the immediate neighbourhood of the integral 
values 1 of L. Any spreading of the regions of high 
intensity in reciprocal space is thus confined to planes 
parallel to a*, b*. In other words, the spreading takes 
place perpendicular to the axis of the dislocation. 
The amplitude of diffraction is then 

G = F Z ~ j e x p  ( 2 : ~ i ( j l H + j 2 g ) + n l i v 2 } ,  (7) 

where Z represents the factor depending on L in 
equation (6). With 

r '  --  j t a+ j~b  (8) 
and 

p = ( H - - h ) a * + ( K - - k ) b * ,  (9) 

this becomes 

G = F Z Z  i exp { 2 z d p . r ' + n l i v ? ) ,  (10) 

where the integers h and k have been chosen so that  
IH--hl  and IK- -k l  are less than ½. The expression 
to be summed is now a slowly varying function of r ' ,  
so that  the summation over Jl and j~ can be replaced 
by integration over the cross-section of the crystal. 
Also, because of the symmetry of the problem, G 
depends only on the magnitude of 0, not on its direction, 
and it may be supposed parallel to the fixed direction 
from which y) is measured. Then p . r ' =  0r cos 9, 
where r is the projection of r '  on the plane of a*, b*, 
and equation (10) becomes 

G = F Z C  -1 exp  {2zdor cos v2+nlig,}rdrdv 2 (11) 
0 0 

= 2xd'aFZC -1 J,~ (2~0r) rdr ,  (12) 
0 

where Jn~ is the Bessel function of order nl (Jahnke 
& Emde, 1938, p. 149) and C is the area of the base 
of the unit cell projected on the plane of a*, b*. For 
n -- 0 (no dislocation) this becomes 

f~J .  (2~0 r ) G = 2 z F Z C  -1 rdr (13) 

= F Z A C - 1 0 - 1 J I ( 2 Z o A ) .  (14) 

This is also the form assumed by G for l = 0, what- 
ever the value of n. Reflexions with l -- 0, therefore, 
are unaffected by a screw dislocation, and for 0 -- 0 
have an amplitude 

G O = F Z e r A ' [ C ,  (15) 

proportional to the cross-sectional area of the crystal. 
For all other reflexions from a screw-dislocated crystal 
the amplitude is zero for 0 = 0. This appears curious 
at first sight; Frank (1949) has given an elementary 
argument to make it plausible. 

21" 
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For convenience of mathematical discussion equation 
(12) may be put in the form 

where 
G = i" .$ 'Z .zrA~C-~.K~(x) ,  (16) 

m ----- n l ,  (17) 

x ----- 2:r~A, (18) 
and 

Kin(x) = 2x -~ ~J,n(~)d~. (19) 
0 

By writing ~----~,.~-~+1 and integrating by parts 
the integral becomes 

S ~ J ~ ( ~ ) d ~ = - - x J m ( x ) - ~ m  J~_~(~)d~ (20) 
0 

O0 

---- --xJm_l(x)+2m__,~ J,n+~g(x) (21) 
g----0 

(Jahnl~e & Erode, 1938, p. 145). I t  may however be 
expressed as a finite sum by repeated use of the 
recurrence relation 

J,~ ---- - -2J~_ l+J ,_2  , 
$ving 

½m--1 

Jm-1 ---- - -2  ~ J~_~g+g~ (22) 
g=l  

form m even, and 
½(m-D 

Jm-t  = --2 ~ J'~_~.a+Jo (23) 
g = l  

for m odd. Equation (20) thus becomes 

x ½m--1 

Io ~Jm(~)d~ --  _ x J m _ l ( x ) - - 2 m . ~  Jm-2g(X)--mJo(x)-l-m 

g=~ (24) 
when m is even, and 

½(m-~) 
- - x J ~ _ ~ ( x ) - - 2 m . ~  J~_~g(x)--t-m,,IoJo(~)d~ (25) 

g=l 

when m is odd. The integral terminating the series for 
m odd has been tabulated by Lowan & Abramowitz 
(1943). For small x it may be more convenient to use 
the power series 

co (__)gx2g+m 

Kin(x) = ~., (2g_i_m+2)g!(g+m)!2~g+m_ 1 (26) 
g=0 

obtained by expanding J~(x) in equation (19) and 
integrating term-by-term. For large values of x 
convergence is not rapid. 

3. A p p a r e n t  part ic le  s i zes  

The expressions for G are complicated when nl ~ O, 
so that  it seems impracticable tio derive the line 

profiles on a Debye-Scherrer photograph. Series for 
the integral breadths can however be obtained. If 
H(~) ~--G(Q)G*(Q) is the intensity distribution near 
the point hid of the reciprocal lattice, the intensity of 
the Debye-Scherrer line for s ---- 2 (sin 0--sin 00)/2--0 , 
where 0 o. is the Bragg angle for the undislocated crystal, 
is proportional to 

1to--0 _ooH(~)dedL . (27) 

Because of geometrical foreshortening of the discs for 
which 1 ~ 0 there is also a factor depending on sin 0 o 
and 1 (compare Wilson, 1949c, p. 71), so that  

/ods = / { 4  4 sin' 0o 
sin~ 0o_ la2~[c~j. H o . d~ . (28) 

I t  is only for nl -- 0 that  H o can be expressed simply. 
In this case G(~) = FZAC-X~-IJI(2~rQA) (equation (14)), 
so that  

Ho 2F~A2C-t So~-'J~(2zrQA)d Q S ½ --  • ZgdL (29) 
-½ 

= I---~.F~AaC-~ I½_iZ2dL (30) 

on making use of an equation given by Watson 
(1922, p. 403, equation (2)). The integral of Z 9 gives 
N a, so that  

H o -~ 3 ~- F2AaC-1Na 

16A 
---- 3g ' NF~ (31) 

where N is the total number of cells in the crystal. 
The integrated intensity of the reflexion is N$ TM, so 
that  the apparent particle size is 

3---~-" 4 sin ~ 0 o -  1222/c~J " (32) 

For l-----0 (the only case in which it applies to dis- 
located crystals) this becomes 

e-~ 16A/3~. (33) 

Equation (32) gives also the apparent particle size 
for long cylindrical non-dislocated crystals, a result 
which does not appear to have been previously 
obtained. In terms of the 'true' particle size p-----|/(z~A 9) 
it becomes 

16 ~{ 4 sin ~ 00 
e = ~-~. p • 4 sin ~ Oo--l~29]c~J" (34) 

The numerical factor has the value 0-957. . . ,  which 
is of the order of unity, as usual (Wilson, 1949c 
p. 40, Table 1). In general (equation (12)) 

H(~) = ~,r,2F~Z~ff -2 J,~ (2~r)  J,~ (2~Qt)rdrtdt, (35) 
0 0 
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H o = 8y~2F2NaC-1 

× I; S~ { foJ,~(2~rq)J~l(27etQ)dq} rdrtdt . 
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The integral in curly brackets gives a hypergeometric 
function (Watson, 1922, p. 401): 

IoJ,1 (2zr~) J~z (2~to) d@ (37) 

1 (rim F(nl-[-½) ( r 9) 
= 2-~'~,t/ "F(nl+l)F(½)" ~F~ nl+½, 5; nl4-1;~ , 

provided tha t  t > r; r and t are interchanged for 
r > t. In order to perform the integrations over r and t 
the hypergeometric function must be expressed as a 
series" 

CO 

Ho __ 4 F 2 N 3 C _ l  ~ " F(m-[-nl+½)F(m+½) 
m=0 I~(m+nl+l) m! 

× o o t2m+m+ 1 • rdr~- ,}t r2m-¥-~l" rdr tdt (38) 

(39) _ _ 8 AaF21V3C_~ ~ F(m+nl+½)I'(m+½) 
3 m=0 (2m~-rd~- 2) I~(m+nl+ 1) m l 

_ 8A N F 2 ~  F(m~-nl~-½)F(m+½) . (40) 
3~ ~=0 (2m+nl+2)F(m~nl+l)m! 

The series in equation (40) is, except for the factor 
(2m+nl+2) and a constant factor, a hypergeometric 
function of argument unity, which has simple values 
given by (Whittaker & Watson, 1935, pp. 281-282). 

F(a)F(b)P(c--a--b) 
I'(c--a)F(c--b) • (41)  

oo F(m+a)F(m+b) 
"~  F(m+c)m! m=O 

For the special case nl=3 the~[actor (2m+5)=2(m+2½)  
in the denominator of equation (40) can be cancelled 
with the first factor of I'(m+3½)=(m+2½)F(m+2½), 
so tha t  

4A ~ / '(m+2½)F(m~-½) 
H0 -- ~-~" NF2 X F(m~-4)m! 

m=0 

16A 
= 15z " NF2 " (42) 

This suggests a general method of reducing equation 
(40) to a finite sum for nl = 3, 5, 7 . . . .  , by dividing 
(2m~-nl~2) into F(m-i-nl~-½). Let 

n l = 2 p % l ,  where p =  1 , 2 , 3  . . . .  , (43) 

and represent the sum in equation (40) by S,1. By 
repeated division 

321 

T'(m~-2p~- ~-) 
m+p+~ 

and 

-- _F(m-i-2p-[-½)+ (p--1) F(m-[-2p +½) 
m+p+~ 

-- -]"(m + 2"p+ ½) + (p--1)F(m + 2p--½) 

~-(p--1) (p--2) F(m+2p--½) 
m+p+~ 

- -  . . .  

p--1 

= y ,  (p - - l ) !  F(m+2p--k+½) (44) 
k=o (p - -k - - l ) !  

p-1 (p - - l ) !  oo F(m-i-2p--k+½)F(m+½) 
s.~ = ½ Z ( p - k - l ) ,  ~Y' 

k=0 "m=0 F(m+2p~-2)m! 

(p--1)!/'(½),__~01 F(2p--k+½)k! 
---- 2F(2p~-~) (p--k--1)!F(k+~)" (45) 

For nl even the factor (2m+nl+2) can be absorbed 
into m!, the missing factors being inserted in both 
the numerator  and the denominator. Then, on writing 
2p for nl and g for m~-p~l ,  

s.~= ½X 
g = p + l  

I'(g +p--½ ) (g-- 1) (g - -2 ) . . .  (g--p)F(g--p--½) 
F(g+p)g! (46) 

The sum is from g ---- p + l  to c~, but  terms constructed 
on the same model for g - -  1 to g - - p  are all zero, 
so tha t  writing the sum from g = 1 to c~ does not  
change its value. A term for g = 0 is, however, finite, 
and has the value --2pg/(4~f--1).  Equation (46) thus 
becomes 

2p~ 
Sm - - 4 p 2 _  1 (47) 

OO 

~_½ ~ F(g-bp--½)(g--1)(g--2)...(g--p)F(g--p--½) 
g=0 F(g+p)g! " 

Consider the product 
Pj-~(g--p~j--1)...(g--p-[-1)(g--p)F(g--p_½). (48) 

Since (g--'P) = (g-P-b+½)  

the last two factors may  be written 

(g -p )F(g -p -½)  = I ' (g-p+½)+½I' (g-p-½) .  

and by a continuation of this process Pj  may  be 
expressed as a finite series 

i 
Pj ~- ~ Aj, kF(g--pTk--½), (49) 

k=0 

where clearly Aj, j = 1 and Ai, 0 == F(j~-½)/F(½). Since 

Pj+I=(g--P+j ) P j =  {(g--p+k--½)+(j--k ÷ ½)}Pj, (50) 

the coefficients A j, k can be built up by use of the 
relation 

Ai+l,k -- (j--k+½)Aj, k+Ai, k_l. (51) 
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Thus for k -  1 

A~+~,l "-- (j--½)A~,l-bA~,o 

r(j+½) 
= (j--i)A~,~+ 1-'(½) 

iF(J- -½) .  A~,~ - -  F(½) ' 

for k = 2 

A~+1,2 = ( j - - ~ ) A ~ , ~ + - - - -  
jT'(j--½) 

F(½) 

10 

~ ,  (52) 8 

(53) 

, (54) 

j ( j --1)F(j---~ ) . (55) 
Ah2 - 2F(½) ' 

and u ~ a t e l y  

j ! l " ( j - -k+½) (56) &," = k!(j--k)!/-'(½)" 

6 

~0 
4 

The product in equation (47) is Pp, so tha t  

O0 I 21 , 4' ' ~i 
nl 

Fig. 1. The ]ine breadth, corrected for foreshortening, as a 
function of nl. The straight line is tim ---- ~0(1-~l'3nl) • 

2z~p 
S n Z  " - -  " 

4p ~ -  1 

~p! r (p -k+½)  ~ r(g+p-½)r(g-p+k-½) 
+½ ~=0 k! (p_k)!F(½) Z F(g+p)g, = g=0 " 

2~p p ! 
4p ~ -  1 + ~ r(p--½) 

2~p 

4p  ~ -  1 

q- 22p-l(2p_l)  ~ 

~ r(p--k+½)P(--p+k--½) 
F(2p--k+½)k! 

(_)~-~+i 
(57) 

~=0 

(2p-- 2k q- 1) k! F(2p--k  ~.-½)" 

4. Variat ion  of  l ine  b r e a d t h s  w i th  ! 

The series in equations (45) and (57) readily give S~ 
for small nl, except nl = 1. There seems no easy way 
of calculating this, but  'direct use of the series in 
equation (40) (not very rapidly convergent) gives 
S 1 > 0.744, and probably about 0.78. The line 
breadths, for constant foreshortening factor, are 
proportional to 1/Sin, and are shown plotted against 
nl in Fig. 1 for nl up to 7. In  spite of the complexity 
of the expressions for Snz they lie remarkably close 
to the straight line 

flnz = flo(l+ 1.30nt). (58) 

Frank's  simple argument (1949) would give 

fl~ ---- to(1 + 1.17nt). (59) 

I am grateful to Dr F. C. Frank, Dr W. H. Hall, 
Dr E. Orowan and Dr A. R. Stokes for criticisms and 
suggestions, and to Prof. Sir Lawrence Bragg and 
Dr E. Orowan for making possible a visit to the 
Cavendish Laboratory during which some of the work 
was done. I t  forms par t  of an investigation of 
diffraction by imperfect structures for which grants 
have been given by the Royal  Society and by  the 
British Iron and Steel Research Association. 
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